
100 Most Asked

Python Interview QnA

CommonJobs

Made By:

1. What is Python?

Python is a high-level, interpreted programming language known for its simplicity and

readability. It emphasizes code readability and encourages a clean and concise coding

style.

2. What are the key features of Python?

Key features of Python include its easy-to-read syntax, dynamic typing, automatic memory

management, extensive standard library, and support for multiple programming

paradigms.

3. How is Python different from other programming languages?

Python stands out with its simplicity, readability, and easy-to-understand syntax. It has a

large and active community, extensive libraries, and is widely used in various domains such

as web development, data analysis, and scienti c computing.

4. What is PEP 8?

PEP 8 is the of cial style guide for Python code. It provides guidelines on how to format

Python code to enhance readability and maintain consistency across projects.

5. What are Python modules?

Python modules are les containing Python code that de ne functions, classes, and

variables. They allow code reuse and organization, making it easier to manage and maintain

larger projects.

6. What is a Python package?

A Python package is a way to organize related modules into a directory hierarchy. It allows

for a logical grouping of modules, making it easier to manage and distribute code.

7. How do you comment in Python?

Comments in Python are denoted by the # character. Anything after the # is considered a

comment and is ignored by the Python interpreter.

8. What are Python data types?

Python supports various data types, including integers, oating-point numbers, strings,

lists, tuples, dictionaries, and booleans. Each data type has its own characteristics and

uses.

9. What is type conversion in Python?

Type conversion, also known as type casting, is the process of converting one data type into
www.commonjobs.in

another. Python provides built-in functions like int(), oat(), str(), etc., to perform type

conversion.

10. What is string interpolation in Python?

String interpolation in Python allows you to embed expressions or variables within a string,

making it easier to construct dynamic strings. It can be done using f-strings or the format()

method.

11. What are Python conditional statements?

Python conditional statements, such as if, elif, and else, allow you to perform different

actions based on certain conditions. They control the ow of the program based on the

truthfulness of the conditions.

12. What are Python loops?

Python loops, like for and while, enable you to execute a block of code repeatedly. They

iterate over a sequence or execute until a speci c condition is met.

13. What is the difference between range() and xrange() in Python 2?

In Python 2, range() generates a list of numbers, while xrange() returns an iterator. xrange() is

more memory-ef cient for large ranges because it generates values on the y.

14. What are Python functions?

Python functions are reusable blocks of code that perform a speci c task. They help in code

organization, reusability, and modularity. Functions can accept arguments and return values.

15. What is the difference between a function and a method in Python?

In Python, a function is a standalone block of code that can be called independently. A

method, on the other hand, is a function that is associated with an object or a class and can

access the object's data.

16. How do you de ne a function in Python?

A function in Python is de ned using the def keyword, followed by the function name,

parentheses for parameters (if any), and a colon. The function body is indented below.

17. What is the __init__ method used for?

The __init__ method is a special method in Python classes that is automatically called when

an object is created from the class. It is used to initialize the object's attributes and perform

setup tasks.

18. What is object-oriented programming (OOP)?

Object-oriented programming (OOP) is a programming paradigm that organizes code into

objects, which are instances of classes. It emphasizes encapsulation, inheritance, and

polymorphism.

19. What are Python classes and objects?

In Python, a class is a blueprint that de nes the properties and behaviors of objects. An

object is an instance of a class. It represents a speci c entity and can interact with other

objects.

20. How do you create an object in Python?

An object is created by calling the class as if it were a function. The class acts as a

constructor, initializing the object and returning it.

www.commonjobs.in

21. What is inheritance in Python?

Inheritance is a mechanism in Python that allows a class to inherit properties and methods

from another class. It enables code reuse and supports the creation of hierarchical class

structures.

22. What is method overriding?

Method overriding is the process of de ning a method in a subclass that has the same name

as a method in its superclass. The subclass method overrides the implementation of the

superclass method.

23. What is method overloading?

Method overloading is not directly supported in Python. However, you can achieve similar

functionality by de ning a single method with default argument values or using variable-

length arguments.

24. What is encapsulation in Python?

Encapsulation is the process of bundling data and methods together within a class. It allows

for data hiding and controlling access to the object's attributes using getter and setter

methods.

25. What is polymorphism in Python?

Polymorphism is the ability of an object to take on multiple forms or have multiple

behaviors. In Python, polymorphism is achieved through method overriding and method

overloading (using default argument values or variable-length arguments).

26. What is a generator in Python?

A generator in Python is a function that returns an iterator. It allows you to generate a

sequence of values on-the- y, conserving memory and improving performance.

27. What are decorators in Python?

Decorators are a way to modify the behavior of a function or class without directly changing

its source code. They are de ned using the @decorator_name syntax and can be used for

tasks like logging, timing, or modifying function arguments.

28. What is a lambda function in Python?

A lambda function is an anonymous function in Python that is de ned using the lambda

keyword. It is a shorthand way to create small, one-line functions without explicitly de ning

a function using def.

29. What is a module in Python?

A module in Python is a le containing Python de nitions and statements. It can be

imported and used in other Python programs to access its functions, classes, and variables.

30. How do you import modules in Python?

Modules can be imported in Python using the import keyword followed by the module name.

You can also import speci c objects from a module using the from module_name import

object_name syntax.

31. What is a virtual environment in Python?

A virtual environment in Python is a self-contained directory that contains a speci c version

www.commonjobs.in

of Python interpreter and installed packages. It allows you to isolate Python environments

for different projects and manage their dependencies.

32. What are exceptions in Python?

Exceptions in Python are events that occur during the execution of a program that disrupt

the normal ow of the code. They can be handled using try-except blocks to gracefully

handle errors and exceptions.

33. What is error handling in Python?

Error handling in Python involves using try-except blocks to catch and handle exceptions

that may occur during the execution of the code. It allows for graceful recovery from errors

and prevents the program from crashing.

34. What is the purpose of the try-except-else- nally block in Python?

The try-except-else- nally block in Python is used for exception handling. The try block

contains the code that may raise an exception. The except block is used to handle speci c

exceptions. The else block is executed if no exceptions occur. The nally block is always

executed, regardless of whether an exception occurred or not.

35. What are the built-in data structures in Python?

Python provides several built-in data structures, including lists, tuples, dictionaries, sets,

and strings. These data structures offer different ways to store, manipulate, and retrieve

data.

36. What is a list in Python?

A list in Python is an ordered collection of items that can be of different data types. It is

mutable, meaning its elements can be modi ed. Lists are denoted by square brackets [] and

can contain elements separated by commas.

37. What is a tuple in Python?

A tuple in Python is an ordered collection of items similar to a list. However, tuples are

immutable, meaning their elements cannot be changed once assigned. Tuples are denoted

by parentheses () and can contain elements separated by commas.

38. What is a dictionary in Python?

A dictionary in Python is an unordered collection of key-value pairs. It is mutable and allows

fast access to values based on their associated keys. Dictionaries are denoted by curly

braces { } and use colons : to separate keys and values.

39. What is a set in Python?

A set in Python is an unordered collection of unique elements. It is mutable and provides

mathematical set operations like union, intersection, and difference. Sets are denoted by

curly braces { } or the set() function.

40. What is a string in Python?

A string in Python is a sequence of characters enclosed in single quotes, double quotes, or

triple quotes. It is immutable, meaning its individual characters cannot be changed. Strings

can be manipulated and operated upon in various ways.

41. How do you concatenate strings in Python?

Strings can be concatenated in Python using the + operator or by using the .join() method.

www.commonjobs.in

The + operator concatenates two strings, while the .join() method concatenates multiple

strings using a speci ed delimiter.

42. How do you format strings in Python?

Strings can be formatted in Python using the % operator, the str.format() method, or f-

strings (formatted string literals). These methods allow you to insert values into

placeholders within a string.

43. What are le handling operations in Python?

File handling operations in Python involve reading from and writing to les. Python provides

built-in functions and methods to open, read, write, and close les.

44. How do you open and close a le in Python?

Files can be opened in Python using the open() function, which takes the le name and the

mode of operation as arguments. The close() method is used to close an opened le and free

up system resources.

45. What are the different le modes in Python?

The different le modes in Python include "r" for reading, "w" for writing (overwriting

existing content), "a" for appending, "x" for exclusive creation (fails if the le already exists),

and "b" for binary mode.

46. What is exception handling in le operations?

Exception handling in le operations involves handling potential errors that may occur while

performing le-related operations. This ensures that the program handles le-related

exceptions gracefully and avoids crashes or data loss.

47. What is a context manager in Python?

A context manager in Python is an object that de nes the methods __enter__() and

__exit__() to enable the with statement. It allows for resource allocation and deallocation,

such as automatically closing a le after use.

48. What is a generator function in Python?

A generator function in Python is a special type of function that uses the yield keyword

instead of return. It allows you to generate a sequence of values on-the- y without storing

them all in memory at once.

49. What is a list comprehension in Python?

A list comprehension in Python is a concise way to create lists based on existing lists or

other iterable objects. It allows you to combine looping and conditional logic in a single line

of code.

50. What is the pass statement in Python?

The pass statement in Python is a placeholder statement that does nothing. It is used as a

syntactic placeholder when a statement is required by the Python syntax, but no action is

needed.

51. What is the purpose of the self parameter in Python?

The self parameter is used as a reference to the current instance of a class in Python. It

allows accessing the attributes and methods of that instance within the class de nition.

www.commonjobs.in

52. What is the difference between a shallow copy and a deep copy in Python?

In Python, a shallow copy creates a new object that references the original data, while a

deep copy creates a new object with completely independent copies of the original data.

Modifying the original data does not affect the deep copy, but it can affect the shallow copy.

53. What are the advantages of using Python for web development?

Python offers several advantages for web development, including a wide range of

frameworks (such as Django and Flask), a large community, extensive libraries, and easy

integration with other technologies.

54. What is the Global Interpreter Lock (GIL) in Python?

The Global Interpreter Lock (GIL) is a mechanism in the CPython interpreter (the reference

implementation of Python) that allows only one thread to execute Python bytecode at a

time. This restricts the parallel execution of Python threads and can impact performance in

certain scenarios.

55. What is a metaclass in Python?

A metaclass in Python is a class that de nes the behavior and structure of other classes. It

allows you to customize class creation, modify attributes, and add additional functionality to

classes.

56. How do you handle le I/O errors in Python?

File I/O errors in Python can be handled using exception handling. By using try-except

blocks around le-related operations, you can catch speci c exceptions like

FileNotFoundError or PermissionError and handle them gracefully.

57. What is the purpose of the __name__ variable in Python?

The __name__ variable in Python is a built-in variable that represents the current module's

name. It can be used to determine whether a module is being run as the main script or

imported as a module.

58. What is the difference between a shallow comparison and a deep comparison in Python?

In Python, a shallow comparison checks if two objects have the same memory address,

while a deep comparison checks if the objects have the same values. Shallow comparisons

can be done using the is operator, while deep comparisons are typically done using the ==

operator.

59. What are the advantages of using virtual environments in Python?

Virtual environments in Python provide a dedicated environment for each project, allowing

you to isolate project dependencies, avoid con icts between packages, and maintain

project-speci c versions of Python and packages.

60. What is the purpose of the __main__ block in Python?

The __main__ block in Python is used to de ne the entry point of a Python program. The

code inside the if __name__ == "__main__": block will only execute if the script is run directly,

not when it is imported as a module.

61. What is the purpose of the __str__ method in Python?

The __str__ method in Python is a special method that returns a string representation of an

www.commonjobs.in

object. It is used to provide a human-readable representation of the object when the str()

function is called or when the object is printed.

62. What is the purpose of the __repr__ method in Python?

The __repr__ method in Python is a special method that returns a string representation of

an object that can be used to recreate the object. It is used to provide a detailed and

unambiguous representation of the object.

63. What is the difference between the __str__ and __repr__ methods in Python?

The __str__ method is intended to provide a human-readable string representation of an

object, while the __repr__ method is intended to provide a detailed and unambiguous string

representation that can be used to recreate the object.

64. What is the purpose of the super() function in Python?

The super() function in Python is used to call a method in a superclass or parent class. It is

often used in method overriding to invoke the superclass's implementation of the method

before adding additional functionality in the subclass.

65. What is the purpose of the __getitem__ method in Python?

The __getitem__ method in Python is a special method that allows objects to de ne

behavior for indexing and slicing operations. It is called when an item is accessed using

square brackets ([]) and supports accessing items by index or slicing.

66. What is the purpose of the __setitem__ method in Python?

The __setitem__ method in Python is a special method that allows objects to de ne

behavior for assigning values to items using square brackets ([]). It is called when an item is

assigned a value using indexing.

67. What is the purpose of the __len__ method in Python?

The __len__ method in Python is a special method that returns the length of an object. It is

called when the len() function is used on an object.

68. What is the purpose of the __iter__ method in Python?

The __iter__ method in Python is a special method that returns an iterator object. It is used

to make an object iterable, meaning it can be looped over using a for loop or used with other

iterator-related functions and constructs.

69. What is the purpose of the __next__ method in Python?

The __next__ method in Python is a special method that returns the next item in an iterator.

It is called by the next() function and is used in conjunction with the __iter__ method to

create custom iterators.

70. What is the purpose of the @property decorator in Python?

The @property decorator in Python is used to de ne a method as a getter for a class

attribute. It allows accessing the attribute as if it were a normal attribute, while internally

calling the getter method.

71. What is the purpose of the @staticmethod decorator in Python?

The @staticmethod decorator in Python is used to de ne a static method in a class. Static

methods do not require an instance of the class to be called and can be accessed directly

from the class itself.

www.commonjobs.in

72. What is the purpose of the @classmethod decorator in Python?

The @classmethod decorator in Python is used to de ne a class method. Class methods

receive the class itself as the rst parameter, allowing them to access and modify class-

level attributes and perform operations speci c to the class.

73. What is the purpose of the __call__ method in Python?

The __call__ method in Python is a special method that allows an object to be called as if it

were a function. It is called when parentheses are used to invoke the object.

74. What is the purpose of the *args and **kwargs parameters in Python?

The *args parameter in Python allows a function to accept a variable number of positional

arguments as a tuple, while the **kwargs parameter allows a function to accept a variable

number of keyword arguments as a dictionary. This exibility allows functions to handle

different numbers and types of arguments.

75. What are decorators in Python?

Decorators in Python are a way to modify or enhance the behavior of functions or classes

without directly modifying their source code. Decorators are implemented as functions that

wrap around the target function or class and add additional functionality.

76. What is the purpose of the @classmethod decorator in Python?

The @classmethod decorator in Python is used to de ne a class method. Class methods

receive the class itself as the rst parameter, allowing them to access and modify class-

level attributes and perform operations speci c to the class.

77. What is a lambda function in Python?

A lambda function in Python is an anonymous function that can be de ned in a single line. It

is often used for simple, one-time operations and does not require a formal def statement.

78. What are modules in Python?

Modules in Python are les that contain Python code and de nitions. They can be imported

and used in other Python programs to provide reusable functionality.

79. What are packages in Python?

Packages in Python are a way to organize related modules into a directory hierarchy. They

allow for better organization and modularization of code, making it easier to manage large

projects.

80. What is the purpose of the __init__.py le in a package?

The __init__.py le in a package serves as an indicator that the directory is a Python

package. It can be empty or contain initialization code that is executed when the package is

imported.

81. What is the purpose of the sys module in Python?

The sys module in Python provides access to system-speci c parameters and functions. It

allows interaction with the Python interpreter and provides information about the runtime

environment.

82. What is the purpose of the os module in Python?

The os module in Python provides a way to interact with the operating system. It allows

www.commonjobs.in

performing various operations related to le and directory manipulation, process

management, and environment variables.

83. What is the purpose of the datetime module in Python?

The datetime module in Python provides classes for manipulating dates and times. It allows

creating, formatting, and performing operations on dates and times.

84. What are decorators in Python?

Decorators in Python are a way to modify or enhance the behavior of functions or classes

without directly modifying their source code. Decorators are implemented as functions that

wrap around the target function or class and add additional functionality.

85. What is the purpose of the @property decorator in Python?

The @property decorator in Python is used to de ne a method as a getter for a class

attribute. It allows accessing the attribute as if it were a normal attribute, while internally

calling the getter method.

86. What is the purpose of the @staticmethod decorator in Python?

The @staticmethod decorator in Python is used to de ne a static method in a class. Static

methods do not require an instance of the class to be called and can be accessed directly

from the class itself.

87. What is the purpose of the @classmethod decorator in Python?

The @classmethod decorator in Python is used to de ne a class method. Class methods

receive the class itself as the rst parameter, allowing them to access and modify class-

level attributes and perform operations speci c to the class.

88. What is a lambda function in Python?

A lambda function in Python is an anonymous function that can be de ned in a single line. It

is often used for simple, one-time operations and does not require a formal def statement.

89. What are modules in Python?

Modules in Python are les that contain Python code and de nitions. They can be imported

and used in other Python programs to provide reusable functionality.

90. What are packages in Python?

Packages in Python are a way to organize related modules into a directory hierarchy. They

allow for better organization and modularization of code, making it easier to manage large

projects.

91. What is the purpose of the __init__.py le in a package?

The __init__.py le in a package serves as an indicator that the directory is a Python

package. It can be empty or contain initialization code that is executed when the package is

imported.

92. What is the purpose of the sys module in Python?

The sys module in Python provides access to system-speci c parameters and functions. It

allows interaction with the Python interpreter and provides information about the runtime

environment.

93. What is the purpose of the os module in Python?

The os module in Python provides a way to interact with the operating system. It allows

www.commonjobs.in

performing various operations related to le and directory manipulation, process

management, and environment variables.

94. What is the purpose of the datetime module in Python?

The datetime module in Python provides classes for manipulating dates and times. It allows

creating, formatting, and performing operations on dates and times.

95. What is the purpose of the random module in Python?

The random module in Python provides functions for generating random numbers. It allows

you to generate random integers, oating-point numbers, and make random selections

from lists.

96. What is the purpose of the json module in Python?

The json module in Python provides functions for working with JSON (JavaScript Object

Notation) data. It allows encoding Python objects into JSON strings and decoding JSON

strings into Python objects.

97. What is the purpose of the pickle module in Python?

The pickle module in Python provides functions for serializing and deserializing Python

objects. It allows you to convert Python objects into a binary format that can be stored or

transmitted, and then restore them back into objects.

98. What are generators in Python?

Generators in Python are functions that can be paused and resumed, allowing them to

produce a sequence of values over time. They are memory-ef cient and provide a

convenient way to iterate over large or in nite sequences.

99. What is the purpose of the yield keyword in Python?

The yield keyword in Python is used in the context of generators. It allows a generator

function to temporarily pause and yield a value to the caller, without losing its internal state.

The generator can then be resumed to continue execution from where it left off.

100. What is the purpose of the zip() function in Python?

The zip() function in Python is used to combine multiple iterables (such as lists or tuples) into

a single iterable of tuples. It pairs up corresponding elements from each iterable, stopping

when the shortest iterable is exhausted.

www.commonjobs.in

